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ABSTRACT

We compare the behavior of a microeconomic scheduler with three commonly used schedul-

ing policies under a systematically designed set of experiments. We experiment with three dif-

ferent income distribution policies within the economic scheduling algorithm. We show that the

other scheduling policies can be considered as limiting cases of the microeconomic scheduling

policy. Our results show that the economic scheduler performs the best overall when mutually

antagonistic criteria, such as system and user response times on one hand, and system utiliza-

tion and maximum waiting times on the other hand, are considered. We conclude that the

microeconomic scheduler exhibits robust performance across a broad range of parameters, and

is exible in permitting trade-o�s between antagonistic goals.
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was supported by National Science Foundation grants CCR-9412698 and DMS-9505110, by U. S. Department of

Energy grant DE-FG05-94ER25216, and by the National Aeronautics and Space Administration under NASA

Contract NAS1-19480 while the second author was in residence at the Institute for Computer Applications in
Science and Engineering.
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1 Introduction

We have considered the problem of scheduling on-line a set of jobs on a parallel computer

with identical processors in earlier work [6], and have described an algorithm for this problem

based on microeconomic ideas. In this paper we compare, through simulation experiments,

the microeconomic scheduler that we have developed with other scheduling policies. We have

tried to design a systematic set of experiments that explore various regions of the parameter

space, and thereby to characterize robust scheduling policies. We explore three variants of the

microeconomic approach and show how they permit trade-o�s between mutually antagonistic

goals such as high system utilization and low user response times. The microeconomic approach

has the additional advantages of maintaining fairness at the user level and providing each user

with control over the performance of his or her jobs.

The work we describe should be useful at many parallel computer installations and work-

station clusters in the world, where system administrators face the task of scheduling the

jobs submitted on their machines. EASY, a job scheduler for parallel computers developed at

Argonne National Labs by Lifka [3], and used at several institutions, uses the �rst-come-�rst-

served policy with job reservations. This can be shown to be a special case of the microeconomic

approach (when \income rates" are set to zero in this policy). Our work shows that the mi-

croeconomic approach is capable of modeling other commonly used scheduling policies as well.

Furthermore, our results show that the microeconomic scheduler is more robust than the other

schedulers included in this study.

The rest of this paper is organized as follows. In Section 2, we briey describe the mi-

croeconomic model of the job scheduling problem and a scheduler based on this approach.

We are necessarily brief here due to space considerations, and refer the reader to our earlier

paper [6] for additional details. A discussion of earlier economic approaches for resource alloca-

tion, load balancing, and memory allocation can also be found there. Section 3.1 describes the

various policies that we compare, the experimental setting, and the design of our simulations;

Section 3.2 describes the results we have obtained. We summarize in Section 4.

2 The Model

We consider a parallel computer consisting of N identical processors interconnected by a gen-

eral communication network. We assume that the communication parameters for any pair of

processors do not depend on their relative position, 2 and therefore the system may be arbi-

trarily partitioned. Every job speci�es, upon its arrival, the number of processors p it needs,

and the estimated computation time. Once processors are allocated, they are guaranteed to

be exclusively used by the job for the entire duration of its execution. Also, the job is assumed

to acquire or release all p processors at the same time.

The computation system is modeled as a microeconomic environment in which di�erent

users compete for obtaining system resources in order to run their jobs. To get the requested

resources the user has to pay the price asked by the system. As in real life, the buyers (users)

and the sellers (system) have antagonistic goals; the users wish to run their jobs as fast as

possible with minimum expenses, while the system wants to maximize its income.

The ow of currency in the system is depicted in Figure 1. Every user has a savings account

in which he receives money at a constant rate, as long as he has less than a speci�ed amount

of funds. Whenever a user decides to run a job, he creates an expense account for that job

to which money from his savings account is transferred. The job uses this account to buy the

2This is a reasonable assumption for many modern multiprocessor architectures (e.g., IBM SP-1/2, Intel

Paragon).
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Figure 1: The currency ow.

resources it needs. Once the job is scheduled for execution, all of its money is transferred to

the system account. In order to maximize the system income, the scheduler applies a simple

strategy: it allocates available resources to the job that o�ers the best price. In a loaded

system, it is possible that not all p processors that were requested by a job become available

at the same time. In this case, when the job is scheduled it is asked to pay for the wasted

resources also to discourage fragmentation. For convenience, we refer to a unit of time as a

minute and a unit of funds as a dollar . More details can be found in [6].

3 Experiments

3.1 Experimental Setting

We use a simple simulator [6] that models a homogeneous parallel computer with N = 128

processors and 10 independent users. We group the jobs into three classes depending on the

computation time and the number of processors required. The jobs are taken from a single

Poisson source with mean arrival rate � (measured in jobs/minute). By the decomposition

property of a single Poisson process into multiple output streams ([7], Sec. 6.4), we can divide

the initial job stream into three independent streams �
1
, �

2
, �

3
, where �i represents the

aggregate arrival rate of all the jobs in class i. Further, we assume that users generate jobs

with equal probability, i.e., the probability that a job belonging to class i is generated by a

speci�c user is �i=10.

In the following experiments we compare three microeconomic scheduling policies and three

variable-partitioning (VP) policies ([1], Sec. 3.2.3). In a VP policy the processors are not

partitioned into predetermined subsets dedicated to each class of jobs, as is done in �xed-

partitioning policies. Previous work ([5]) has shown that VP policies outperform the latter.

We consider three VP policies:

� FCFS|This is the simplest among the policies considered. The jobs are placed in a

�rst-come �rst-served (FCFS) queue; if there are enough free processors then the �rst
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Class Num. Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Coef.

type procs. Mean Arv. Mean Arv. Mean Arv. Mean Arv. Mean Arv. var.

serv. rate serv. rate serv. rate serv. rate serv. rate

1 1-16 50 0.7� 100 0.7� 200 0.7� 50 0.33� 50 0.9� 4

2 17-32 100 0.2� 100 0.2� 100 0.2� 100 0.33� 100 0.09� 2.5

3 33-64 200 0.1� 100 0.1� 50 0.1� 200 0.33� 200 0.01� 1.8

Table 1: The workload characteristics for �ve experiments. The last four experiments are

derived from Experiment 1 by changing the mean service time and the relative arrival rate for

each class (the parameters that are changed are in bold characters). The last column represents

the coe�cient of variation of the mean service time for each class.

job from the queue is scheduled for execution. If not, the job waits till the requested

number of processors becomes free.

� RES|This is a modi�cation of FCFS. If a su�cient number of processors are not avail-

able to run the next job from the queue, the scheduler reserves processors for this job for

the earliest time in the future when the required number of processors become available.

Further, to make use of idle processors until that time, the scheduler searches the queue

and schedules the earliest jobs whose requests can be satis�ed before these processors

need to be dedicated to the job with the reservation.

� SCDF|In the Smallest-Cumulative-Demand-First policy, jobs are selected for execution

in increasing order of their cumulative computation times (the product of the execution

time and the number of processors). This policy could cause starvation like its counter-

part in the single processor case, shortest-job-�rst.

The economic policies we consider di�er in how the user distributes the income rate to

his/her waiting jobs:

� ECON PROP|In this case, the user distributes his/her income rate among his/her

waiting jobs in proportion to their cumulative computation times. We note that this

policy reduces to the basic policy we have used in [6].

� ECON CONST|This is the simplest microeconomic policy. The user divides equally

his/her income rate among his/her waiting jobs, i.e., if user i has ni jobs in the waiting

queue and his/her income rate is ri, then every job receives money at the rate ri=ni.

� ECON INV|Here the user distributes his/her income rate in inverse proportion to the

jobs' cumulative computation times.

In addition, we assume that in all the microeconomic policies every user has the same

income rate equal to 100 dollars/minute.

To study how these policies perform under various loads we perform �ve experiments. The

basic parameters used in each experiment are given in Table 1. In all the experiments the job

service time is assumed to satisfy a biphase hyperexponential distribution [4]. The parameters

in Experiment 1 are derived from the observed workload on an Intel iPSC/860 hypercube at

NASA Ames, reported by Feitelson and Nitzberg [2]. 3 These parameters include the relative

values for the mean service time and coe�cient of variation for each class (see Table 1).

3Since we consider a more general architecture than an iPSC/860 hypercube, we assume that the number

of processors that a job requests is uniformly distributed. For example, a job that takes 64 processors on a
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The parameters for the other four experiments are derived from those of Experiment 1: in

Experiments 2 and 3, we change the relative arrival rates associated with each class, while in

Experiments 4 and 5, we change the mean computation times associated with each class. Note

that in each experiment we change only one parameter: either the class arrival rates, or the

mean computation times. This design of the experiments isolates the e�ects of each parameter

on the system performance.

Let wi be the time that job i waits in the ready list before being scheduled, and let Ti be

the execution time for job i. (We use both service time and computation time interchangeably

with execution time.) Further, let si = wi +Ti be the system response time of job i, and let ui

denote the user response time, where ui = si=Ti. Intuitively, ui measures for how long a user

should wait for executing a job in terms of the job's service time. We note that according to

this metric small jobs are much more sensitive to larger delays. Also, observe that ui is always

larger than 1. In analyzing the scheduling policies, following Naik, Setia and Squillante [5], we

use two performance metrics: the mean system response time S, and the mean user response

time U :

S = lim
n!1

1

n

nX

i=1

si; U = lim
n!1

1

n

nX

i=1

ui: (1)

Note that S measures the performance from the system's point of view, while U measures the

performance from the user's point of view [5]. We note that the mean system waiting time

can be obtained by subtracting the mean service time from the mean system response time S.

Hence we will not include results for the mean waiting time in this paper. Instead, in Figure 4

we give the results for the maximum waiting time, i.e., the maximum waiting time incurred by

any job during an entire experiment.

We de�ne the system load as the ratio of the total demand received by the system in one

time unit, and the available computation time per time unit. Similarly we de�ne the system

utilization as the ratio of the total computation time allocated during one time unit, and the

available computation time per time unit. Note that the system utilization is never greater

than the system load, since it is not possible to allocate more time than the service time

requested by the incoming jobs. In each of the following experiments, we generate a system

load between 0.1 and 0.9 in steps of 0.1, by suitably varying �. To attain steady state we run

each experiment (for every value of the system load) for 500,000 time-units. In all our plots

the system utilization is represented on the x-axis. It is important to note that whenever a

point's x-coordinate is not a multiple of 0.1, as in Figures 2, 3, and 4, the system utilization

is less than the system load. For example, in Figure 2(d) the system utilization for SCDF

is approximately 0.84 when the system load is 0.9. The system utilization is lower than the

system load when the waiting jobs cannot use available processors either due to requirement

constraints (i.e., there are not enough free processors to accommodate a job's request), or due

to scheduling policy constraints (e.g., in FCFS jobs are strictly scheduled in order of their

arrival).

3.2 Experimental Results

The FCFS policy performs the worst among these policies in every category. This policy tends

to heavily penalize small jobs when the system load increases. Speci�cally, when the �rst job

in the queue requests a large number of processors and its request cannot be satis�ed, then

hypercube is assumed to request any number of processors between 32 and 64, with equal probability. Also,

we have not used the absolute values for service-times as given in [2]; instead we have chosen values that

approximate the ratios between the service-times of di�erent classes.
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every subsequent job has to wait, even if there are enough free processors to satisfy its needs.

We note that this behavior was also mentioned in other previous studies [2, 3, 5].

The RES policy attempts to eliminate this problem by providing future reservations for

a large job that cannot run immediately, and utilizing idle processors to run jobs that will

complete before the reservation time. Notice that the RES policy is a special case of the

ECON policy in which the income rate of every user is zero, assuming that the scheduler

selects the job that arrives �rst among jobs that o�er the same price. The EASY scheduler

developed by Lifka uses this policy [3].

As shown in Figures 2 and 3, in comparison to FCFS , the RES policy dramatically improves

both the system response time and the user response time. However, when compared with other

policies RES performs consistently worse. This is because this policy fails to take into account

signi�cant job characteristics other than the job's arrival time. Both the number of processors

requested by a job and its computation time heavily impact S and U . On the other hand, the

RES policy is consistently the best in terms of the maximum delay incurred by a job during the

entire simulation. This is to be expected since, whenever possible, this policy tries to serve all

the jobs in the order of their arrival. However, these results should be considered together with

the mean waiting times, which can be obtained by a translation along the y-axis in the plots

in Figure 2. Recall that the mean waiting times can be expressed as the di�erence between the

system response time S and the mean service time, and that the mean service time is constant

by construction for each experiment (see Table 1).

While in the FCFS and the RES policies the incoming jobs are scheduled according to their

arrival times, in the SCDF policy they are scheduled in increasing order of their cumulative

computation times. As noted in [1], the intuition behind this scheme is to approximate the

shortest-job-�rst policy which is optimal in the one processor case. As expected, this policy

performs well (see Figures 2 and 3) when the number of processors requested by a job is corre-

lated with its mean computation time, since in this case a job that belongs to a lower numbered

class is likely to request both fewer processors and a shorter computation time. This trend is

clear from Experiments 1, 4, and 5, where both the number of jobs and the mean computation

time increase monotonically with class number. On the other hand, in Experiments 2 and 3,

where the mean computation times and the number of processors requested by the jobs are

not correlated, SCDF does not perform as well.

Figures 2 and 3 also show that except for the FCFS policy, SCDF performs the worst

in terms of system utilization at high loads. For example, in Experiment 1 when the system

load is 0:9, the system utilization for SCDF is 0:87, while for the RES and microeconomic

policies it approaches 0:9 (see also the other experiments). In the SCDF policy, when the

job with the smallest cumulative computation time cannot be scheduled because the number

of processors it requests is not available, it and all other jobs have to wait until a su�cient

number of processors become free. We tried a reservation policy similar to the one in RES ,

but this performed even worse.

Finally, Figure 4 shows that the SCDF policy has the largest waiting times. This re-

sult reects the fact that the SCDF is the only policy considered here that is susceptible to

starvation; hence large jobs may wait inde�nitely in the ready queue.

Unlike the previous policies, the microeconomic policies take into account both the arrival

time and the cumulative computation time of each job. The arrival time is implicitly taken

into account since a job that arrives earlier will receive more money in its expense account,

and consequently it can o�er a better price per computation time than another job with the

same cumulative computation time that arrived later. On the other hand, the cumulative

computation time is used in computing the price o�ered per computation time-unit; in both

ECON PROP and ECON INV policies, the cumulative computation time is also used to com-

pute the rate at which money is transferred from the user's saving account into the job's expense
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account. We notice that when compared to the ECON PROP policy, both ECON CONST

and ECON INV favor small jobs over large jobs. As an illustration, consider an example in

which a user has two ready jobs, the �rst requesting 500 minutes, and the second requesting

1500 minutes. Then in the ECON PROP policy the transfer rates are 25 dollars/minute for

the �rst job and 75 dollars/minute for the second job; for the ECON CONST policy both

transfer rates are equal to 50 dollars/minute; and for the ECON INV policy these rates are

inversely proportional to cumulative computation times, i.e., 75 dollars/minute for the �rst

job and 25 dollars/minute for the second one.

As a general trend we note that in all �ve experiments, when the response times S and

U are considered, the ECON INV policy performs better than the ECON CONST policy,

which, in turn, performs better than the ECON PROP policy. Hence if we want to improve

S and U then small jobs should be favored over large jobs. We note that in the limit this

is similar to the SCDF policy, in which smaller jobs are always scheduled before larger ones.

This is why ECON INV is the closest economic policy to SCDF .

Another observation from Experiments 2 and 3 is that these policies are more sensitive to

the variations in the transfer rate when the number of large jobs increases. In this situation,

for the ECON CONST and ECON PROP policies, when many large jobs reserve processors

for future times, it becomes harder to �nd small jobs to �t into the residual idle processor

slots.

When the maximum waiting time is considered, ECON PROP performs the best, while

ECON INV performs the worst. This is expected because when small jobs are favored over

large jobs, the waiting time of larger jobs increase. Finally, we note that among the microeco-

nomic policies the ECON PROP policy attains the highest system utilization while ECON INV

attains the lowest system utilization.

4 Conclusions

In this paper we use simulation to compare three microeconomic policies with three variable

partitioning policies: �rst-come �rst-served with and without reservation (FCFS and RES),

and smallest cumulative demand �rst (SCDF ). The microeconomic policies di�er in the way

in which the user distributes the income rate among waiting jobs. Speci�cally we consider the

cases when the income rate is distributed directly in proportion to (ECON PROP), inversely

in proportion to (ECON INV ), and independently of (ECON CONST ) the jobs' cumulative

computation times. In order to isolate the e�ects of various parameters, we designed experi-

ments that vary one parameter at a time.

When user and system response times are considered, the only policy that outperforms the

microeconomic policies for some experiments is the SCDF policy. However, we note that this

policy is the only one in this group susceptible to starvation, and it is also consistently the worst

in terms of system utilization and maximum waiting time. When the maximum waiting times

are considered, the RES policy performs the best in all cases. However, excepting FCFS , this

policy has the worst system and user response times. The microeconomic policies perform the

best overall when all of these mutually antagonistic criteria are considered. This should not be

surprising, since both RES and SCDF policies are extreme limiting cases of the microeconomic

approach.

By being able to gradually change the \degree" to which small jobs are favored over large

jobs (by considering di�erent transfer rates in the microeconomic policies) we learn several

important lessons. First, by giving a higher priority to smaller jobs over larger jobs one may

hope to increase both the system and user response times at the expense of system utilization

and the maximum waiting time. Second, when the fraction of large jobs in the system increases,
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both the user and the system response times become more sensitive to the variations in the

income transfer rates.

We conclude that microeconomic scheduling policies exhibit robust performance across a

broad range of parameters. Changing the income-distribution rule among the jobs of a user

is an e�ective way to trade between user and system response times on one hand, and system

utilization and maximum waiting time on the other hand. This makes it easier to achieve

exibility in the microeconomic scheduler relative to the other schedulers.
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Figure 2: The mean system response time S for: (a) experiment 1, (b) experiment 2,

(c) experiment 3, (d) experiment 4, and (e) experiment 5.
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Figure 3: The mean user response time U for: (a) experiment 1, (b) experiment 2, (c) experi-

ment 3, (d) experiment 4, and (e) experiment 5.
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Figure 4: The maximum waiting time for: (a) experiment 1, (b) experiment 2, (c) experiment

3, (d) experiment 4, and (e) experiment 5.
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